子集是什么意思?
真子集和子集的区别如下1、定义不同子集是包括本身的元素的集合;真子集是除元素本身的元素的集合。2、范围不同子集:集合A范围大于或等于集合B,B是A的子集。真子集:集合A范围比B大,B是A的真子集。3、元素不同子集就是一个集合中的元素,全部都是另一个集合中的元素,有可能与另一个集合相等。真子集就是一个集合中的元素,全部是另一个集合中的元素,但不存在相等。性质一、根据子集的定义,我们知道A⊆A。也就是说,任何一个集合是它本身的子集。二、对于空集∅,我们规定∅⊆A,即空集是任何集合的子集。说明:若A=∅,则∅⊆A仍成立。证明:给定任意集合A,要证明∅是A的子集。这要求给出所有∅的元素是A的元素;但是,∅没有元素。对有经验的数学家们来说,推论“∅没有元素,所以∅的所有元素是A 的元素"是显然的。为了证明∅不是A的子集,必须找到一个元素,属于∅,但不属于A。 因为∅没有元素,所以这是不可能的。因此∅一定是A的子集。
什么是子集?
所有子集:∅、{1}、{2}、{3}、{1,2}、{1,3}、{2,3}、{1,2,3}。1、空集是所有集合的子集;2、含有1个元素的子集有:{1}、{2}、{3};3、含有2个元素的子集有:{1,2}、{1,3}、{2,3};4、含有3个元素的子集有:{1,2,3}。设S,T是两个集合,如果S的所有元素都属于T ,即 则称S是T的子集,记为 扩展资料设有限集A,集合A的元素个数为n1、A的子集的个数是2的n次幂;2、A的真子集的个数是2的n次幂减一;3、A的非空子集的个数是2的n次幂减一;4、A的非空真子集的个数是2的n次幂减二;5、空集是任意一个集合的子集,是任意一个非空集合的真子集;6、任何一个集合是它本身的子集,即A⊆A;空集只有一个子集,即它本身;7、集合的子集和真子集具有传递性:若A⊆B、B⊆C,则A⊆C;若A⫋B、B⫋C,则A⫋C。