库拉索芦荟 - 芦荟汇聚地!

高中数学教学设计

> 知识库 芦荟君 2024-11-08 11:48

高中数学教案教学设计

  人生要敢于理解挑战,经受得起挑战的人才能够领悟人生非凡的真谛,才能够实现自我无限的超越,才能够创造魅力永恒的价值。接下来是我为大家整理的高中数学教案教学设计,希望大家喜欢!    高中数学教案教学设计一   函数单调性与奇偶性   教学目标   1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本 方法 .   (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.   (2)能从数和形两个角度认识单调性和奇偶性.   (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.   2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.   3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.   教学建议   一、知识结构   (1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.   (2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.   二、重点难点分析   (1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明.   (2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.   三、教法建议   (1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.   (2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生 总结 规律.   函数的奇偶性概念引入时,可设计一个课件,以   \   的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值   \   开始,逐渐让   \   在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式   \   时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如   \   )说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.    高中数学教案教学设计二   高中数学第一册(上)1.1集合(一)教学案例教学目标:1、理解集合、集合的元素的概念;2、了解集合的元素的三个特性;3、记忆常用数集的表示;4、会判断元素与集合的关系,   集合(一)教学案例   。教学重点:1、集合的概念;2、集合的元素的三个特征性质教学难点:1、集合的元素的三个特性;2、数集与数集的关系课前准备:1、教具准备:多媒体制作数学家康托介绍,包括头像、生平、对数学发展所作的贡献;本节课所需的例题、图形等。2、布置学生预习1.1集合.教学设计:一、[创设情境]多媒体展示激发兴趣:为科学而疯的人——康托托康(Contor,Georg)(1845-1918),俄罗斯—德国数学家、19世纪数学伟大成就之一—集合论的创立人。康托生於俄国圣彼得堡,父母亲是丹_,父亲出生於丹_都哥本哈根,是一个富裕的商人,他的母亲玛丽具有艺术家血统,他父母亲年轻时移居到俄国圣彼得堡,康托就出生在那里,康托是家中长子,并於1856年全家移居到德国法兰克福,也因为康托多次改变国籍,许多国家都认为康托的成就都是它们培养出来的。康托自幼对数学有浓厚兴趣。23岁获博士学位,以后一直从事数学教学与研究。他所创立的集合论已被公认为全部数学的基础。1874年康托的有关无穷的概念,震撼了知识界。康托凭借古代与中世纪哲学著作中关于无限的思想而导出了关于数的本质新的思想模式,建立了处理数学中的无限的基本技巧,从而极大地推动了分析与逻辑的发展。他研究数论和用三角函数地表示函数等问题,发现了惊人的结果:证明有理数是可列的,而全体实数是不可列的。由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的康托向神秘的无穷宣战。他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托对这类“无穷集合”问题发表了一系列 文章 ,通过严格证明得出了许多惊人的结论。康托的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托的集合论是一种“疾病”,康托的概念是“雾中之雾”,甚至说康托是“疯子”.来自数学_的巨大精神压力终于摧垮了康托,使他心力交瘁,患了精神_,被送进精神病医院.他在集合论方面许多非常出色的成果,都是在精神病发作的间歇时期获得的.真金不怕火炼,康托的思想终于大放光彩。1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托的工作“可能是这个代所能夸耀的最巨大的工作。”可是这时康托仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。1918年1月6日,康托在一家精神病院去世。今天,我们将学习高中数学第一章集合与简易逻辑的1.1集合(一),让我们回顾一下初中涉及到集合的有关知识。二、[复习旧知识]复习提问:1.在初中,我们学过哪些集合?实数集、二元一次方程的解集、不等式(组)的解集、点的集合等。2.在初中,我们用集合描述过什么?角平分线、线段的垂直平分线、圆、圆的内部、圆的外部等。   实数有理数无理数整数分数正无理数负无理数正分数负分数负整数自然数正整数零3.实数的分类3、实数的分类:   实数正实数负实数零   4、以下由学生完成:(1)、把下列各数填入相应的圈内   0、、2.5、、、-6、、8%、19   整数集合分数集合无理数集合   (2).把下列各数填入相应的大括号内1、-10、、、-2、3.6、、—0.1、8、负有理数集合:{}   整数集合:{}   正实数集:{}   无理数集:{}   3.解不等式组(1)2x-3〈5   4.绝对值小于3的整数是—————————————————三、[学习互动]1、观察下列对象(1)2,4,6,8,10,12;(2)所有的直角三角形;(3)与一个角的两边距离相等的点;(4)满足x-3>2的全体实数;(5)本班全体男生;(6)我国古代四大发明;(7)2007年本省高考考试科目;(8)2008年奥运会的球类项目,   《集合(一)教学案例》通过学生观察以上对象后,教师提问:[集合的概念](1)集合是什么?某些指定的对象集在一起就成为一个集合,简称集。(2)什么是集合的元素?集合中的每个对象叫做这个集合的元素。(3)集合、集合的元素怎样表示?一般用大括号表示集合且常用大写字母表示;集合中的元素用小写字母表示。(4)集合中的元素与集合的关系a是集合A的元素,称a属于A,记作a∈A;a不是集合A的元素,称a不属于A,记作aA。2、探讨下列问题(1){1,2,2,3}是含有1个1、2个2、1个3的集合吗?(2)的科学家能构成一个集合吗?(3){a,b,c,d}与{b,c,d,a}是否表同一个集合?通过师生共同探讨得出下面结论:通过师生共同探讨得出结论:[集合中的元素的性质]确定性:集合中的元素必须是确定的。集合的元素的特点互异性:集合中的元素必须是互异的。无序性:集合中的元素是无先后顺序的。组成集合的元素可以是:数、图、人、事物等。[常用数集的表示](1)自然数集:用N表示(2)正整数集:用N﹡或N+表示(3)整数集:用Z表示(4)有理数集:用Q表示(5)实数集:用R表示(正实数集用R_R+表示)四、[四、[互动参与]例1下面的各组对象能否构成集合是()(A)所有的好人(B)小于2004的实数(C)和2004非常接近的数(D)方程x2-3x+2=0的根例2用符号填空(1)3.14Q(2)πQ(3)0N+(4)0N   32(5)(-2)0N_6)Q   3232(7)Z(8)—R   五、[分层议练]1、选择题(1)下列不能形成集合的是()A、所有三角形B、《 高一数学 》中的所有难题C、大于π的整数D、所以的无理数2、判断正误(1){x2,3x+2,5x3-x}={5x3-x,x2,3x+2}()(2)若4x=3,则xN()(3)若xQ,则xR()(4)若xN,则xN+()   常用数集属于a∈AN、N_或N+)、Z、Q、R。集合集合的概念元素与集合的关系集合中元素的性质确定性互异性无序性不属于aA   本节课设计的目的:通过创设情境激发学生的学习兴趣, 课前预习 培养学生的自学能力;多媒体辅助教学提高课堂效益,使教学呈现方式多样化;探索现代教学手段与高中数学教学的整合。    高中数学教案教学设计三   集合的概念   教学目的:   (1)使学生初步理解集合的概念,知道常用数集的概念及记法   (2)使学生初步了解“属于”关系的意义   (3)使学生初步了解有限集、无限集、空集的意义   教学重点:集合的基本概念及表示方法   教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示   一些简单的集合   授课类型:新授课   课时安排:1课时   教具:多媒体、实物投影仪   内容分析:   1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础   把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑   本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子   这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念   集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明   教学过程:   一、复习引入:   1.简介数集的发展,复习公约数和最小公倍数,质数与和数;   2.教材中的章头引言;   3.集合论的创始人——康托尔(德国数学家)(见附录);   4.“物以类聚”,“人以群分”;   5.教材中例子(P4)   二、讲解新课:   阅读教材第一部分,问题如下:   (1)有那些概念?是如何定义的?   (2)有那些符号?是如何表示的?   (3)集合中元素的特性是什么?   (一)集合的有关概念:   由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.   定义:一般地,某些指定的对象集在一起就成为一个集合.   1、集合的概念   (1)集合:某些指定的对象集在一起就形成一个集合(简称集)   (2)元素:集合中每个对象叫做这个集合的元素   2、常用数集及记法   (1)非负整数集(自然数集):全体非负整数的集合记作N,   (2)正整数集:非负整数集内排除0的集记作N_N+   (3)整数集:全体整数的集合记作Z,   (4)有理数集:全体有理数的集合记作Q,   (5)实数集:全体实数的集合记作R   注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括   数0   (2)非负整数集内排除0的集记作N_N+Q、Z、R等 其它   数集内排除0的集,也是这样表示,例如,整数集内排除0   的集,表示成Z _  3、元素对于集合的隶属关系   (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A   (2)不属于:如果a不是集合A的元素,就说a不属于A,记作   4、集合中元素的特性   (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,   或者不在,不能模棱两可   (2)互异性:集合中的元素没有重复   (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)   5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……   元素通常用小写的拉丁字母表示,如a、b、c、p、q……   ⑵“∈”的开口方向,不能把a∈A颠倒过来写   三、练习题:   1、教材P5练习1、2   2、下列各组对象能确定一个集合吗?   (1)所有很大的实数(不确定)   (2)好心的人(不确定)   (3)1,2,2,3,4,5.(有重复)   3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__   4、由实数x,-x,|x|,所组成的集合,最多含(A)   (A)2个元素(B)3个元素(C)4个元素(D)5个元素   5、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:   (1)当x∈N时,x∈G;   (2)若x∈G,y∈G,则x+y∈G,而不一定属于集合G   证明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,   则x=x+0_a+b∈G,即x∈G   证明(2):∵x∈G,y∈G,   ∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)   ∴x+y=(a+b)+(c+d)=(a+c)+(b+d)   ∵a∈Z,b∈Z,c∈Z,d∈Z   ∴(a+c)∈Z,(b+d)∈Z   ∴x+y=(a+c)+(b+d)∈G,   又∵=   且不一定都是整数,   ∴=不一定属于集合G   四、小结:本节课学习了以下内容:   1.集合的有关概念:(集合、元素、属于、不属于)   2.集合元素的性质:确定性,互异性,无序性   3.常用数集的定义及记法   五、课后作业:   六、板书设计(略)   七、课后记:

高中数学教案的教学方法有哪些

1.讲授法是一种教学方法,教du师使用zhi口语来描述情境,叙述事实,解释概念,论证原则和澄dao清规则。

2..谈话法又称回答法,是通过教师和学生之间的对话传播和学习知识的方法。其特点是教师指导学生利用现有的经验和知识回答教师提出的问题,获取新知识或巩固和检查所获得的知识。

3.讨论方法是一种方法,使整个班级或小组围绕某个中心问题发表自己的意见和看法,共同探索,互相激励,进行头脑风暴和学习。

4.演示方法是一种教学方法,教师通过现代教学方法向学生展示物理或物理图像进行观察,或通过示范实验,使学生获得知识更新。它是一种辅助教学方法,通常与讲座,对话,讨论等结合使用。

5.练习法是学生在教师指导下巩固知识,培养各种学习技能的基本方法。这也是学生学习过程中的一项重要实践活动。

6.实验法是一种教学方法,学生在教师的指导下使用某些设备和材料,通过操作引起实验对象的某些变化,并通过观察这些变化获得新知识或验证知识。一种常用于自然科学学科的方法。

7.实习是一种教学方法,学生可以使用某些实习场所,参加某些实习,掌握一定的技能和相关的直接知识,或者验证间接知识并全面应用所学知识。


2020高中数学教学教案3篇

  仰望天空时,什么都比你高,你会自卑;俯视大地时,什么都比你低,你会自负;只有放宽视野,把天空和大地尽收眼底,才能在苍穹沃土之间找到你真正的位置。无需自卑,不要自负,坚持自信。接下来是我为大家整理的2020高中数学教学教案,希望大家喜欢!    2020高中数学教学教案一   《平面向量》   各位评委,老师们:大家好!   很高兴参加这次说课活动.这对我来说也是一次难得的学习和锻炼的机会,感谢各位老师在百忙之中来此予以指导.希望各位评委和老师们对我的说课内容提出宝贵意见.   我说课的内容是的教学,所用的教材是人民 教育 出版社出版的全日制普通高级中学教科书(试验修订本-必修)第一册下,教学内容为第96页至98页第五章第一节.本校是浙江省一级重点中学,学生基础相对较好.我在进行教学设计时,也充分考虑到了这一点.   下面我从教材分析,教学目标的确定, 教学 方法 的选择和教学过程的设计四个方面来汇报我对这节课的教学设想.   一教材分析   (1)地位和作用   向量是近代数学中重要和基本的概念之一,有着深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以转化为向量的加(减)法,数乘向量,数量积运算(运算率),从而把图形的基本性质转化为向量的运算体系.向量是沟通代数,几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用.   平面向量的基本概念是在学生了解了物理学中的有关力,位移等矢量的概念的基础上进一步对向量的深入学习.为学习向量的知识体系奠定了知识和方法基础.   (2)教学结构的调整   课本在这一部分内容的教学为一课时,首先从小船航行的距离和方向两个要素出发,抽象出向量的概念,并重点说明了向量与数量的区别.然后介绍了向量的几何表示,向量的长度,零向量,单位向量,平行向量,共线向量,相等向量等基本概念.为使学生更好地掌握这些基本概念,同时深化其认知过程和探究过程.在教学中我将教学的顺序做如下的调整:将本节教学中认知过程的教学内容适当集中,以突出这节课的主题;例题,习题部分主要由学生依照概念自行分析,独立完成.   (3)重点,难点,关键   由于本节课是本章内容的第一节课,是学生学习本章的基础.为了本章后面知识的学习,首先必须掌握向量的概念,要抓住向量的本质:大小与方向.所以向量,相等向量的概念,向量的几何表示是这节课的重点.本节课是为高一后半学期学生设计的,尽管此时的学生已经有了一定的 学习方法 和习惯,但根据以往的教学 经验 ,多数学生对向量的认识还比较单一,仅仅考虑其大小,忽略其方向,这对学生的理解能力要求比较高,所以我认为向量概念也是这节课的难点.而解决这一难点的关键是多用复杂的几何图形中相等的有向线段让学生进行辨认,加深对向量的理解.   二教学目标的确定   根据本课教材的特点,新大纲对本节课的教学要求,学生身心发展的合理需要,我从三个方面确定了以下教学目标:   (1)基础知识目标:理解向量,零向量,单位向量,共线向量,平行向量,相等向量的概念,会用字母表示向量,能读写已知图中的向量.会根据图形判定向量是否平行,共线,相等.   (2)能力训练目标:培养学生观察、归纳、类比、联想等发现规律的一般方法,培养学生观察问题,分析问题,解决问题的能力。   (3)情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。   三教学方法的选择   Ⅰ教学方法   本节课我采用了”启发探究式的教学方法,根据本课教材的特点和学生的实际情况在教学中突出以下两点:   (1)由教材的特点确立类比思维为教学的主线.   从教材内容看平面向量无论从形式还是内容都与物理学中的有向线段,矢量的概念类似.因此在教学中运用类比作为思维的主线进行教学.让学生充分体会数学知识与其他学科之间的联系以及发生与发展的过程.   (2)由学生的特点确立自主探索式的学习方法   通常学生对于概念课学起来很枯燥,不感兴趣,因此要考虑学生的情感需要,找一些学生感兴趣的题材来激发学生的学习兴趣,另外,学生都有表现自己的欲望,希望得到老师和其他同学的认可,要多表扬,多肯定来激励他们的学习热情.考虑到我校学生的基础较好,思维较为活跃,对自主探索式的学习方法也有一定的认识,所以在教学中我通过创设问题情境,启发引导学生运用科学的思维方法进行自主探究.将学生的独立思考,自主探究,交流讨论等探索活动贯穿于课堂教学的全过程,突出学生的主体作用.   Ⅱ教学手段   本节课中,除使用常规的教学手段外,我还使用了多媒体投影仪和计算机来辅助教学.多媒体投影为师生的交流和讨论提供了平台;计算机演示的作图过程则有助于渗透数形结合思想,更易于对概念的理解和难点的突破.   四教学过程的设计   Ⅰ知识引入阶段---提出学习课题,明确学习目标   (1) 创设情境——引入概念   数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。   由生活中具体的向量的实例引入:大海中船只的航线, 中国象棋 中”马”,”象”的走法等.这些符合高中学生思维活跃, 想象力 丰富的特点,有利于激发学生的学习兴趣.   (2) 观察归纳——形成概念   由实例得出有向线段的概念,有向线段的三个要素:起点,方向,长度.明确知道了有向线段的起点,方向和长度,它的终点就确定.再有目的的进行设计,引导学生概括 总结 出本课新的知识点:向量的概念及其几何表示。   (3) 讨论研究——深化概念   在得到概念后进行归纳,深化,之后向学生提出以下三个问题:   ①向量的要素是什么?   ②向量之间能否比较大小?   ③向量与数量的区别是什么?   同时指出这就是本节课我们要研究和学习的主题.   Ⅱ知识探索阶段---探索平面向量的平行向量.相等向量等概念   (1) 总结 反思 ——提高认识   方向相同或相反的非零向量叫平行向量,也即共线向量,并且规定0与任一向量平行.长度相等且方向相同的向量叫相等向量,规定零向量与零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要条件.   (2)即时训练—巩固新知   为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。   [练习1]判断下列命题是否正确,若不正确,请简述理由.    2020高中数学教学教案二   《正弦定理》   大家好,今天我向大家说课的题目是《正弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。   一 教材分析   本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。   根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:   认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。   能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与 逻辑思维 能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。   情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。   教学重点:正弦定理的内容,正弦定理的证明及基本应用。   教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。   二 教法   根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想, 采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点   三 学法:   指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。   四 教学过程   第一:创设情景,大概用2分钟   第二:实践探究,形成概念,大约用25分钟   第三:应用概念,拓展反思,大约用13分钟   (一)创设情境,布疑激趣   “兴趣是的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。   (二)探寻特例,提出猜想   1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。   2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。   3.让学生总结实验结果,得出猜想:   在三角形中,角与所对的边满足关系   这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。   (三)逻辑推理,证明猜想   1.强调将猜想转化为定理,需要严格的理论证明。   2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。   3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。   4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明   (四)归纳总结,简单应用   1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。   2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。   3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。   (五)讲解例题,巩固定理   1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.   例1简单,结果为解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。   2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.   例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。   (六)课堂练习,提高巩固   1.在△ABC中,已知下列条件,解三角形.   (1)A=45°,C=30°,c=10cm   (2)A=60°,B=45°,c=20cm   2. 在△ABC中,已知下列条件,解三角形.   (1)a=20cm,b=11cm,B=30°   (2)c=54cm,b=39cm,C=115°   学生板演,老师巡视,及时发现问题,并解答。   (七)小结反思,提高认识   通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?   1.用向量证明了正弦定理,体现了数形结合的数学思想。   2.它表述了三角形的边与对角的正弦值的关系。   3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。   (从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)   (八)任务后延,自主探究   如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。    2020高中数学教学教案三   《曲线和方程》   一、教材分析   1.教材背景   作为曲线内容学习的开始,“曲线与方程”这一小节思想性较强,约需三课时,第一课时介绍曲线与方程的概念;第二课时讲曲线方程的求法;第三课时侧重对所求方程的检验.   本课为第二课时   主要内容有:解析几何与坐标法;求曲线方程的方法(直译法)、步骤及例题探求.   2.本课地位和作用   承前启后,数形结合   曲线和方程,既是直线与方程的自然延伸,又是圆锥曲线学习的必备,是后面平面曲线学习的理论基础,是解几中承上启下的关键章节.   “曲线”与“方程”是点的轨迹的两种表现形式.“曲线”是轨迹的几何形式,“方程”是轨迹的代数形式;求曲线方程是用方程研究曲线的先导,是解析几何所要解决的两大类问题的首要问题.体现了坐标法的本质——代数化处理几何问题,是数形结合的典范.   后继性、可探究性   求曲线方程实质上就是求曲线上任意一点(x,y)横纵坐标间的等量关系,但曲线轨迹常无法事先预知类型,通过多媒体演示可以生动展现运动变化特点,但如何获得曲线的方程呢?通过创设情景,激发学生兴趣,充分发挥其主体地位的作用,学习过程具有较强的探究性.   同时,本课内容又为后面的轨迹探求提供方法的准备,并且以后还会继续完善轨迹方程的求解方法.   数学建模与示范性作用   曲线的方程是解析几何的核心.求曲线方程的过程类似于数学建模的过程,它贯穿于解析几何的始终,通过本课例题与变式,要总结规律,掌握方法,为后面圆锥曲线等的轨迹探求提供示范.   数学的 文化 价值   解析几何的发明是变量数学的第一个里程碑,也是近代数学崛起的两大标志之一,是较为完整和典型的重大数学创新史例.解析几何创始人特别是笛卡儿的 事迹 和精神——对科学真理和方法的追求、质疑的科学精神等都是富有启发性和激励性的教育材料.可以根据学生实际情况,条件允许时指导学生课后收集相关资料,通过分析、整理,写出研究 报告 .   3.学情分析   我所授课班级的学生数学基础比较好,思维活跃,在刚刚学习了“曲线的方程和方程的曲线”后,学生对这种必须同时具备纯粹性和完备性的概念有了初步的认识,对用代数方法研究几何问题的科学性、准确性和优越性等已有了初步了解,对具体(平面)图形与方程间能否对应、怎样对应的学习已经有了自然的求知欲望.   二、目标分析   1.教学目标   知识技能目标   理解坐标法的作用及意义.   掌握求曲线方程的一般方法和步骤,能根据所给条件,选择适当坐标系求曲线方程.   过程性目标   通过学生积极参与,亲身经历曲线方程的获得过程,体验坐标法在处理几何问题中的优越性,渗透数形结合的数学思想.   通过自主探索、合作交流,学生历经从“特殊——一般——特殊”的认知模式,完善认知结构.   通过层层深入,培养学生 发散思维 的能力,深化对求曲线方程本质的理解.   情感、态度与价值观目标   通过合作学习,学生间、师生间的相互交流,感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,逐步养成质疑的科学精神.   展现人文数学精神,体现数学文化价值及其在在社会进步、人类文明发展中的重要作用.   2.教学重点和难点   重点:求曲线方程的方法、步骤   难点:几何条件的代数化   依据:求曲线方程是解几研究的两大类问题之一,既是重点也是难点,是高考解答题取材的源泉.主要包括两种类型求曲线的方程:一是已知曲线形状时常用待定系数法;二是动点轨迹方程探求,本课的重点主要是探索动点的曲线方程.   曲线与方程是贯穿平面解几的知识,是解析几何的核心.求曲线方程是几何问题得以代数研究的先决,求曲线方程的过程类似数学建模的过程,是课堂上必须突破的难点.   三、教学方法及教材处理   1.教学方法:探究发现教学法.   遵循以学生为主体,教师为主导,发展为主旨的现代教育原则,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,通过学生主动探索、积极参与、共同交流与协作,在教师的引导和合作下,学生“跳一跳”就能摘得果实,于问题的分析和解决中实现知识的建构和发展,通过不断探究、发现,让学习过程成为心灵愉悦的主动认知过程,使师生的生命活力在课堂上得到充分的发挥.   2.学法指导   学生学法:互相讨论、探索发现   由于学生在尝试问题解决的过程中常会在新旧知识联系、策略选择、思想方法运用等方面遇到一定的困难,需要教师指导.作为学生活动的组织者、引导者、参与者,教师要帮助学生重温与问题解决有关的旧知,给予学生思考的时间和表达的机会,共同对(解题)过程进行反思等,在师生(生生)互动中,给予学生启发和鼓励,在心理上、认知上予以帮助.   这样,在学法上确立的教法,能帮助学生更好地获得完整的认知结构,使学生思维、能力等得到和谐发展.   3.设计理念:   求曲线方程就是将曲线上点的几何表示形式转化为代数表示形式。在这转化过程中,学生通过积极参与、勇于探索的学习方式,让学生的学习过程成为教师指导下的再创造,这也正是建构主义理论的本质要求;遵循学生认知规律,尊重学生个体差异,立足教材,通过对例题的再创造,体现理论联系实际、循序渐进和因材施教的教学原则,让不同层次的学生得到不同层度的发展;通过激发兴趣,强调自主探索与合作交流,让学生逐步地从学会走向会学,由被动走向主动,由课堂走向社会,为学生的终身学习和终身发展奠定良好的基础,也是当前新课程所追求的基本理念.   四、教学过程(教学设计)   根据本课教学内容几何特性外化的特点,抓住形成轨迹的动点具备的几何条件,运用坐标化的手段及等价转化与数形结合的思想方法,突破难点,突出重点.本课的教学设计思路是:   创设情景——从感性的轨迹(图形)认识,到解决生活上的实例,激发学生的求知欲望,抓住学生迫切一试的认知心理,自然引入坐标法的意义及曲线方程的求法.   例题探求——例题一体现知识的承前启后.通过例题一的呈现,学生借助已有的知识经验,自主探求获得问题的求解,在教师的引导下,让学生感受求曲线方程的含义及求解步骤;例题二及变式解决建系难点,建系的开放性,对学生是一种挑战,也是一种创造;两个例题由浅入深,循序渐进,体现因材施教.至此,学生已能初步了解求曲线方程的一般方法和步骤了.   归纳步骤——学生亲身经历求曲线方程的过程,让学生归纳(用自己的语言)、表述求解的步骤,体现从“特殊——一般”认知规律,逐步实现教学目标.   变式练习——通过对例题的变式,由学生求解、回答变式后的含义,深化对认知结构的理解,初步体会数学的理性与严谨,逐步养成质疑与反思的习惯.   反馈练习——利用学生探索而发展来的认知水平,运用获得的知识解决情景创设中的实际问题,一方面可以考察学生运用所学数学知识解决实际问题的意识和能力;另一方面是学生思维的自然顺应,自然释放,是“一般——特殊”的过程.全面完成教学目标. 2020高中数学教学教案3篇相关 文章 : ★ 2020高中数学基本不等式教学教案 ★ 2020高中数学等比数列教案设计大全 ★ 2020高中数学教师的工作计划5篇 ★ 2020高中数学教学计划 ★ 2020高中数学幂函数教学教案 ★ 2020高中数学教研组教学工作计划5篇 ★ 2020高中数学教研组的工作计划5篇 ★ 2020高中数学随机抽样教案 ★ 2020高中数学教师教学工作计划 ★ 2020高中数学教师工作心得总结范文5篇

高中数学教案设计

  为您整理了高中数学教案设计,供您参考!   【高中数学教案设计一】    一、教学内容分析   圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。    二、学生学习情况分析   我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。    三、设计思想   由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率.    四、教学目标   1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。   2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。   3.借助多媒体辅助教学,激发学习数学的兴趣.    五、教学重点与难点:   教学重点   1.对圆锥曲线定义的理解   2.利用圆锥曲线的定义求“最值”   3.“定义法”求轨迹方程   教学难点:   巧用圆锥曲线定义解题    六、教学过程设计   【设计思路】   (一)开门见山,提出问题   一上课,我就直截了当地给出——   例题1:(1) 已知A(-2,0), B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是( )。   (A)椭圆 (B)双曲线 (C)线段 (D)不存在   (2)已知动点 M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是( )。   (A)椭圆 (B)双曲线 (C)抛物线 (D)两条相交直线   【设计意图】   定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。   为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。   【学情预设】   估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折—— 如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2   5这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5   入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。   在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是 ,实轴长为 ,焦距为 。以深化对概念的理解。   (二)理解定义、解决问题   例2 (1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910 相内切,求△ABC面积的最大值。   (2)在(1)的条件下,给定点P(-2,2), 求|PA|   【设计意图】   运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类问题。例2的设置就是为了方便学生的辨析。   【学情预设】   根据以往的经验,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点A的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(1),多数学生应该能准确给出解答,但是对于例2(2)这样相对比较陌生的问题,学生就无从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来,从而找到解决本题的突破口。   (三)自主探究、深化认识   如果时间允许,练习题将为学生们提供一次数学猜想、试验的机会——   练习:设点Q是圆C:(x1)2225|AB|的最小值。 3y225上动点,点A(1,0)是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。   引申:若将点A移到圆C外,点M的轨迹会是什么?   【设计意图】 练习题设置的目的是为学生课外自主探究学习提供平台,当然,如果课堂上时间允许的话,   可借助“多媒体课件”,引导学生对自己的结论进行验证。   【知识链接】   (一)圆锥曲线的定义   1. 圆锥曲线的第一定义   2. 圆锥曲线的统一定义   (二)圆锥曲线定义的应用举例   x2y2   1.双曲线1的两焦点为F1、F2,P为曲线上一点,若P到左焦点F1的距离为12,求P169   到右准线的距离。   |PF1||PF2|2.P为等轴双曲线x2y2a2上一点, F1、F2为两焦点,O为双曲线的中心,求的|PO|   取值范围。   3.在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。   x2y2   4.(1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求259   |MA|+|MF|的最小值。   x2y211(2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当9272   1|AM||MF|最小时,求M点的坐标。 2   x2   (3)已知点P(-2,3)及焦点为F的抛物线y,在抛物线上求一点M,使|PM|+|FM|最小。 8   x2y2   5.已知A(4,0),B(2,2)是椭圆1内的点,M是椭圆上的动点,求|MA|+|MB|的最259   小值与最大值。    七、教学反思   2.利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法. 循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。   总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题.而要能真正进行素质教育,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。   【高中数学教案设计二】   第一章第三节 三角函数的诱导公式(一)    一、指导思想与理论依据   数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。    二、教材分析   三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角 与 、 、 终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.    三、学情分析   本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.    四、教学目标   (1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;   (2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;   (3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;   (4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观.    五、教学重点和难点   1.教学重点   理解并掌握诱导公式.   2.教学难点   正确运用诱导公式,求三角函数值,化简三角函数式.    六、教法学法以及预期效果分析   高中数学优秀教案 高中数学教学设计与教学反思   “授人以鱼不如授之以鱼”, 作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法, 如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析.   1.教法   数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.   在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”, 由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.   2.学法   “现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题.   在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题 简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习.   3.预期效果   本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题.    七、教学流程设计   (一)创设情景   1.复习锐角300,450,600的三角函数值;   2.复习任意角的三角函数定义;   3.问题:由 ,你能否知道sin2100的值吗?引如新课.   设计意图   高中数学优秀教案 高中数学教学设计与教学反思   自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法.   (二)新知探究   1. 让学生发现300角的终边与2100角的终边之间有什么关系;   2.让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;   3.Sin2100与sin300之间有什么关系.   设计意图   由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角 与 的三角函数值的关系做好铺垫.   (三)问题一般化   探究一   1.探究发现任意角 的终边与 的终边关于原点对称;   2.探究发现任意角 的终边和 角的终边与单位圆的交点坐标关于原点对称;   3.探究发现任意角 与 的三角函数值的关系.   设计意图   首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二.同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进   (四)练习   利用诱导公式(二),口答下列三角函数值.   (1). ;(2). ;(3). .   喜悦之后让我们重新启航,接受新的挑战,引入新的问题.   (五)问题变形   由sin3000= -sin600 出发,用三角的定义引导学生求出 sin(-3000),Sin150 0值,让学生联想若已知sin3000= -sin600 ,能否求出sin(-3000),Sin150 0)的值. 学生自主探究

查看全部
热门文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看